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Abgract

This paper will concentrate on contributions of CWI to the development of parallel Runge-Kutta (RK)
methods. We shall describe two approaches to construct such methods. In both approaches, a
conventional implicit RK method is used as a corrector equation whose solution is approximated by an
iterative method. In the first approach, the iteration method ufi@edanumber of iterations without

solving the corrector. Assuming that a one-step predictor is used, this approach again results in an RK
method, however, an RK method possessing a lot of intrinsic parallelism. In the second approach, the
corrector is solved by modified Newton iteration and the linear systems arising in each Newton iteration
are solved by a parallel iteration process which is tuned to the special form of these linear systems.
Furthermore, we apply the parallel iteration process in a step-parallel fashion which further enhances the
amount of parallelism. Finally, the application of parallel RK methods within the framework of
waveform relaxation is briefly discussed.
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1. Introduction
We will be concerned with the solution of the initial-value problem (IVP)

d
(11) G =f). y(t))=yo, y.fORd

by Runge-Kutta (RK) methods on parallel computers. Our starting point is the RK method
(1.2)  yn=yn-1+hOTONF(Yn), R(Yn) :=Yn - h(AO)F(Yy) - edyn.1 = 0.

Here, A is the s-by-s Butcher matrixjs an s-dimensional vector containing the step point weights,
eis the s-dimensional vector with unit entries, | is the d-by-d identity matrix, h is the stgpdjze t
andl] denotes the Kronecker product. The s componégitef the sd-dimensional solution vector

Y n (thestage vector) represent s numerical approximations to the s exact solution w@grs + ch)
wherec = Ae denotes the abscissa vector. Furthermore, for any \Néctc(r\/i), F(V) contains the
derivative vaIues(f(Vi)). It is assumed that the componentscadre distinct and arranged in
increasing order. In the following, we shall use the notation | for any identity matrix. However, it
order will always be clear from the context.

This paper will concentrate on contributions of CWI to the development of parallel RK methods. !
shall describe two approaches to construct such methods. In both approaches, (1.2) is used



corrector equation whose solution is approximated by an iterative method. In the first approach,
iteration method usesfixed number of iterations and (1.2) is not necessarily solved. Assuming that
a one-step predictor is used, this approach again results in an RK method, however, an RK me
possessing a lot of intrinsic parallelism. In the second approach, (1.2) is solved by modified New
iteration and the linear systems arising in each Newton iteration are solved by a parallel iterat
process which is tuned to the special form of these linear systems. Sections 2 and 3 describe
construction and analysis of the parallel RK methods and the parallel iterated RK methods. In Sec
4, the parallel iteration process is applied in a step-parallel fashion which further enhances the am:
of parallelism. Finally, the application of parallel RK methods within the framework of waveforn
relaxation is briefly discussed in Section 5.

2. Paralld RK methods
Consider the method

(2.1)  YnO =eOyn.1 + h(BONF(YRO) + h(CO)F(edyn-1),
(2.2) Y0 =eOyn.1 + h(BONF(YD) + h((A-B)ONF(YRG-D), j=1, .., m,
(2.32) yn=yn-1+hETONF(YM),

where B and C are appropriately chosen matrices and m is a fixed integer. This method car
interpreted as an iterative method with a fixed number of iterations. Evidently,iferand if the
Ynl) converge, theiy ,0) converges to the solutiof, of (1.2). However, for m fixed, we may also
interpret {(2.1),(2.2),(2.3a)} as an RK method with Butcher tableau as given in Figure 2.1a.
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Figure2.1a. Figure2.1b.

In the case of stiff problems it is recommendable to replace (2.3a) by the formula (see Hairer ¢
Wanner [19, p.129] and Shampine [46])

(2.3b) yn=yn-1+ OTALON (Y™ - eDyn-1),

provided that A is nonsingular (we remark that for stiffly accurate RK methods Wwheres'A,
formula (2.3b) reduces tp, = (esTO1)Y (M), The step point formulas (2.3a) and (2.3b) will be



referred to as theonventional and theShampine step point formula. The Butcher tableau for
{(2.1),(2.2).(2.3b)} is given in Figure 2.1b.

Methods of the type (2.2) can also be based on more general correctors than RK formulas (fi
survey we refer to Burrage [10, 11, 12] and to [47]).

The order of accuracy, the linear stability and the amount of intrinsic parallelism of the metho
{(2.1),(2.2),(2.3)} are determined by the matrices A, B and C. We have the following result for tr
(nonstiff) order of accuracy (see e.g. Jackson and Ngrsett [34], Burrage [8, 9], van Dorsselaer [:
and the CWI papers [22, 27]).

Theorem 2.1. The orders of accuracy of the RK methods {(2.1),(2.2),(2.3a)} and
{(2.1),(2.2),(2.3b)} are respectively given by p := mifjm+qg+1} and p := min{p,m+q}, where

p* and g denote the orders of the corrector (1.2) and of the predictor form¥igdbif (B+C)e=c
then g= 1 and if also B = Ac, then o= 2.4

Results for thestiff order of accuracy are given in [25]. From now on, the order of a method i
always meant to be thmenstiff order of accuracy.

The linear stability properties are obtained by applying {(2.1),(2.2),(2.3)} to the basic stability te:
equation y' S\y. For the step point formulas (2.3a) and (2.3b), this leads to the respective stabili
functions

(2.4)  Rm(z) =R(2) + bTZM™2)Q(zle. Rm(z) = R(z) +bTA-1ZMZ)Q(zk,
where z := h and where the matrices Z, Q and the function R are given by
(2.5) Z(2) =z(-zBYY{A-B), Q(2) :=(-zB)(I +zC)- (1 - zA)L, R(z):=1+bT(I - zA) e

Here, R(z) is the stability function of the corrector (1.2). In the following sections, we discuss tf
cases where B vanishes and where B is diagonal.

2.1. Explicit RK methods

For nonstiff problems, we may set B = C = O to obtain an explicit s(m+1)-stage RK methc
requiring sm+1 righthand side evaluations. Since in nonstiff situations, it is natural to use t
conventional step-point formula (2.3a), Theorem 2.1 implies that the order of accuracy is given
p := min{p",m+q+1} = min{p",m+1}. Each block of s stages of this PIRK method can be computec
in parallel, so that for | p*-1, we effectively have an (m+1)-stage method of order m+1 (provided
that s processors are available). Hence, far pi-1, {(2.1),(2.2),(2.3a)} generates an explicit RK
method (ERK method) the order of which equals its number of effective (or sequential) stag:
Iserles and Ngrsett [33] showed that this is an optimal result, because the order p of explicit
methods cannot exceed the numbggaef sequential stages (see also Ngrsett and Simonsen [44]). |
we choose for the underlying corrector, the s-stage Gauss-Legendre methotl /f2sn o that the



number of processors is half the order. The stability polynomials of optimal ERK methods are giv
by truncated Taylor expansions of exp(z), the stability regions of which can be found in the literatt
(cf. e.g. [19]). Experiments on four-processor Alliant computers were performed at the University
Trondheim [38] and at CWI [22]. These experiments showed that parallel RK methods of the abc
type are quite efficient.

Remark 2.1. Optimal ERK methods can also be generated by Richardson extrapolation [23].
particular, extrapolation of the explicit midpoint rule generates an optimal ERK of order p which on
needs [1+p/4] processors (here, [.] denotes the integer part function). However, in actt
computation, they turn out to be more expensive than the Gauss-Legendre-based #ethods.

2.2. Diagonally implicit RK methods

Parallel Diagonally implicit Iterated RK methods arise if B is a diagonal matrix D. Because of tr
‘diagonal’ implicitness, each block of s stages can be computed in parallel, so that effectively,
only have m+1 implicit stages. The stability regions can be computed from the stability functiol
(2.4). In [27] and [24], this has been done for several choices of B = D and C. Table 2.1 specil
the main characteristics of a number of these parallel DIRK methods. For reasons of comparison
also list characteristics of conventional DIRK methods and a parallel RK (PARK) method of Iserl
and Ngrsett [33]. In this tableggpdenotes the block-stage ordegegthe number of implicit
sequential stages, and K the number of processors needed. Furthermore, A-staijhsyalility,
L-stability, and strong A-stability and &j-stability are respectively indicated by A,08( L, > A,

and > A@). All these methods need only one LU-decomposition per processor. The metho
referred to in the fifth and sixth row of this table use either Gauss-Legendre or Radau IlA as i
underlying corrector, both with step-point formula (2.3a). In the methods of the last three rows, t
corrector is Radau IIA with step-point formula (2.3b), and in the methods of the last two rows, D
determined by the stability functions of Wolfbrandt [50].

Table 2.1. Characteristics of DIRK, PARK and PDIRK methods.

Order Pst Sseq K Stability Remarks
p=3 1 p-1 1 A DIRK, Ngrsett [42]
p=3 2 p-1 1 > A DIRK, Crouzeix [16]
p=4 1 p-1 1 A DIRK, Crouzeix [16], Alexander [1]
p=4 1 p-2 2 L PARK, Iserles & Ngrsett [33]
p=34,5 S p-1 s >A Parallel DIRK, C = O, D = diagj, [27]
p=6,7 S p-1 s > A(0) Parallel DIRK, C = O, D = diag}, [27]
p=3,57 S p S >A Parallel DIRK, C = A-Dp(I-D-1A) = 0, [24]
p<6,p=8 S p S L Parallel DIRK, C = O, D =, [27], [50]
p<8,p=10 s p+tl s L Parallel DIRK, C = O, D I, [27], [50]



With respect to its order, the PARK method of Iserles and Ngrsett needs a surprisingly low num
of sequential stages and yet it is L-stable. The parallel DIRK methods have the advantage ¢
relatively high stage order and step point order.

3. Paralld iterated RK methods
The conventional approach of solving the corrector equation (1.2) is the modified (or simplifies
Newton iteration scheme

3.1)  (1-ADhR)(Yr0 - V(D) =-R(Y0D),  j=1...m,

where § is the Jacobian of the righthand side funcfiai t, andY n(0) is the initial iterate to be
provided by some predictor formula. The most powerful RK methods with respect to order
accuracy and stability (such as those based on Gaussian quadrature) possess a full Butcher mat
so that each iteration with (3.1) requires the solution of an sd-dimensional linear system for |
Newton correctiory n() - Y,(-1). If direct solution methods are used, then the costs for solving the
linear systems usually are extremely high, particularly for large values of sd, because of 1
expensive LU-decompositions. As pointed out by Butcher in 1976, LU-costs can be reduced
using a transformatiol 1) = (QOI)UL0) to obtain transformed linear systems with a matrix of
coefficients of the form | - @AQIhJ, (assuming that Q is nonsingular). Hence, by choosing Q suct
that Q1AQ has a (block) diagonal or (block) triangular structure, the transformed systems can be s
into subsystems of dimension less than sd (see [13, 14]). Unfortunately, RK methods of GaL
Legendre and Radau type possess a Butcher matrix with at most one real eigenvalue, so that the
we can achieve is either complex-valued subsystems of dimension d or real-valued subsysternr
dimension 2d (cf. Hairer and Wanner [19, p.130]). To circumvent this overhead in the linear algel
part, Narsett [43] introduced RK methods with an A-matrix possessing a real, one-point spectrt
Using the Butcher transformation [13], these methods can be implemented in such a way that ¢
real-valued systems of dimension d have to be solved. This work was then extended by Burrage
who also derived reference formulas for error control. These so-called SIRK methods are particulz
suitable for implementation on sequential computer systems, since they require only one L
decomposition of dimension d per Jacobian or stepsize update. On parallel computer systems
may drop the 'one-point spectrum' requirement, because the LU-decompositions needed in
transformed subsystems can be computed in parallel. Hence, the Butcher transformation is a mea
introduce parallelism into RK schemes. For example, if A higslaspectrum such as the multi-
implicit RK methods of Ngrsett [43] and Orel [45]. Effectively, these methods require only one LL
decomposition of dimension d per Jacobian or stepsize update.

At CWI we did not change the RK method, but we changed the iteration method (3.1). We desigr
parallel iteration processes with the property that only real-valued, linear systems of dimension d
to be solved.



3.1 Paralld iteration methodsfor linear sysems

In order to avoid linear systems of dimension 2d, we solve the linear system (3.1) iteratively by
inner iteration process which only requires the solution of d-dimensional systems. This is achiev
by the iteration method

(3.2)  YnO" =initial approximation to/n

Forj=1tom
Yn(j!O) = Yn(j'l,r)
Forv=1tor

(1 - BORJ) (Y0¥ - Ylv-D) = - (1 - ADhR)(YnGV-D) - Y0-10) - R(Y L),
gther  yn0V) =y o(MD) + hTONF(Y6V)
o yndV) =y M0 + OTA-0) (Y ,0:V) - edypo(Mmn),

where B is a free matrix with real entries and positive eigenvalues. For a fixed value of |, we shall ¢
(3.2) theinner iteration process with inner iteratesY n(:V) andyn(:V), v = 1, ..., r. The process
defining theouter iteratesY n0:) andyn(:D, j =1, ..., m, will be called theuter iteration process.
Obviously, if the inner iterates converge as ro, then they converge to the solutiprl) of (3.1).

3.1.1. Theregion of convergence. In order to derive convergence conditionslUgl) be the solution
of the equation

3.1 (1- ADRE) (UR0) - YG-10) = - R(YG-10),

and define the inner iteration errgr,, the modified Newton errddj, and the total iteration error
&j,v, I.€.
],V

(3.3) 6j,V = Yn(j’v) - Un(j), ej = Yn(J) - Yn, Sj'v = Yn(jiv) - Yn_
with g o :=&.1,r. Furthermore, we need

G(D) :=F(Yn+A) -F(Yn) - 10J)A, M:=(I- BOhd)L((A - B)Ohd),
(3.4)
N1 := (I - BOhd)-LADIN, Ny :=(I- ADhd,)YADI).

From (3.1) and (3.2) we derive the error recursions
(3.5) 6j,v = Méj,v-l, ej = hNZG(ej-l), &= Msj,v-l + the(sj-l,r),

where j=1, .., mand=1,.., r. From the relation f&, we see that the inner iteration process
converges if the spectral radip@M) of M is less than 1. Since the spectra(M) of M is given by



that of the matrix Z(z) defined in (2.5) with[z a(hJ,), we are led to define theegion of
convergence of the inner iteration process Wy := {z: p(Z(z)) < 1}. We shall call Z(z) the
amplification matrix at the point z and(Z(z)) the @symptotic) amplification factor at z. Its maximum
in the nonpositive halfplane Re(g)0 will be denoted by. If p <1, i.e.I' contains the whole
nonpositive halfplane, then the inner iteration process will be o&ltatvergent.

Theorem 3.1. The inner iteration process converges as ® if a(h,) O T.4
A simple manipulation reveals that
(3.6) g&r=M¢g.,r+h(l-MIN2G(g-1r), j=1,...,m.

Hence, ifa(hJ,) O T and ife1 o= 0o, then it follows from (3.5) and (3.6) thgt., and6; satisfy the
same error recursion. Thus, if the modified Newton method (3.1) convergesadhdh)fll I, then
the iteration process (3.2) converges as m,o.

3.1.2. Theorder of accuracy of theiterates. To obtain further insight into the convergence behaviour,
we consider the order of accuracy of the method (3.2) after a finite number of inner and ou
iterations. Letgj =0(hP()). Then it follows from (3.4) and (3.6) that p(j) satisfies the recursion

(3.7) p(0) =qg+1, p@) =p@-1) + min{r,2}, j=1, .., m,
where q is the order of the predictor. SiNGg™" =Y, + &m, ;, we derive from (3.7) the result:

Theorem 3.2. Let pp = min{r,2} and let p and q denote the orders of the corrector (1.2) and of the
predictor formula foiy (O.1). Irrespective the structure of B, the order of accuracy of the method (3.2
is given by p := min{p,q+1+mp} when using the conventional step point formula and by
p := min{p",g+mp} when using the Shampine step point forma.

This theorem shows that with respect to order, it is recommendable to perform at least two in
iterations, so that for the step point formulas (2.3a) and (2.3b) the order of the corrector is reac
within [(p*-q)/2] and [(p*-g+1)/2] outer iterations (we recall that the order of accuracy is understoo
to be thenonstiff order; forstiff order considerations of Newton-like processes we refer to the work
of van Dorsselaer and Spijker [17, 48]). For example, for Radau IIA correctors with extrapolatic
predictor of order g = s-1 (see (3.11) below) and step point formula (2.3b), we find that for at lei
two inner iterations (i.e. 2 2), the order of accuracy is given by p := min{2s-1,s-1+2m}. Thus, the
order of the corrector is attained for [(s+1)/2] or more outer iterations.

3.1.3. The inner amplification factors. Next we address the speed of convergence of the innel
iteration process. Since M is not expected to be a normal matrix, the asymptotic amplificatiqm factc
defined above only gives information on the speed of convergence after many inner iterations



does not give insight into the convergence behaviour in the initial phase of the iteration proce
However, by using a generalization of a theorem of Von Neumann due to Nevanlinna [41] (see ¢
[19, p.356]), we can prove the theorem:

Theorem 3.3. Let ||.[4 denote the Euclidean matrix norm, and jgf.] be the corresponding

logarithmic norm. Ifuz[Jn] < 0, then| M|, < Amax, 1Z' @), - ¢

This theorem suggests the definition of the (averaiged) amplification factors

N
(3.8) p(r):RreQ%?o (), p(z) = \/ﬂmzr(z)uz .

3.1.4. Stability. Finally, we discuss the stability of the method after a finite number of inner anc
outer iterations. Stability also plays an important role, because stability for small valwesdahr
implies that we can produce stable results at low computational costs. This is particularly importan
step-parallel applications of the scheme (3.2) (cf. Section 4). Therefore, it is of interest to know i
minimal number of iterations in order to ensure that (3.2) is sufficiently stable. For the test equati
y' =y, we haveYp, = (I - zA)leyn.1(MN), so that we deduce from (3.3) and (3.6)

(3.9) Y mnD=v,+ zmr(Yn(O,r) - Yn) =(1-ZM™)(I - zA)leyn.((M") + Zzmry (0.0),

The stability behaviour is highly dependent on the predictor formul " used. We shall
consider last step-point value (LSV) predictors that are only basgd.¢f:") and extrapolation
(EPL) predictors based oyn.1(M" andY n.1(M.". They can both be cast into the form

(3.10) Y@ = pOyna(MD + (PONY na(MD),

where the s-by-s matrix P and the s-dimensional vgctre determined by order conditions. For
LSV predictors we havp =e, P = O and order q = 0. I§& 1, then we have for EPL predictors

(3.11) p:=0, P:=WVL, Vv := ((c-e)i'l), W = (ci'l), i=1,..,s, g=s-1,

where powers of vectors are defined componentwise. On substitution of (3.10) into (3.9), we fi
for the test equation the relation

Y p(M0) = (1 - zAY ey (M0 - Zmr(] - zA)-ley, (M0 + ZMpy, (M) + ZmipY | (m)n),

Together with the step-point formulas (2.3), we obtain a linear recursion for the pa
(yn(m,f),Yn(m,f)). The stability is determined by the magnitude of the characteristic roots of thi
recursion. In the particular case of stiffly accurate RK methods (as in Radau IlIA correctors) whe
cs= 1 andT = esTA, we haveyn,(Mn = (eTON Y {(MD), so that



(3.12) Yn(MD = Sn2)Y naMD), Sn(2) := (1 - Z7)(1 - zA) LeesT + Z™(pesT + ),

the characteristic roots of which are given by the speati{Sm(z)) of the stability matrix §¢(z). In
applications, it is advantageous to have an L-stable method. Since A-stability automatically implies
stability if p(Smr()) vanishes, we are led to consideg0) = ZM()(pes’ + P). Since B is
nonsingular (because B is assumed to have positive eigenvalugs)) S (I - B-1A)M(pes™ + P).

By observing that (I - BA)™ vanishes for me s if p(l - B-1A) vanishes, we have the result:

Theorem 3.4. Let s =1, mr=s,p(l - B-'1A) = 0, let the predictor formula be defined by
{(3.10),(3.11)} and let the Shampine step point formula be used. Then, the method (3.2) is L-sta
whenever it is A-stable$

Using (3.12), we can compute the maximal spectral radius in the left halfplane<R& &) the
stability matrix $n(z). This maximum value will be denoted p{Smnr). We have A-stability or L-
stability if p(Smr) = 1.

The following subsections, are devoted to the region of convergence, the amplificationgd@¢tors
and to stability for a few special choices of the matrices B. The starting point for choosing B is tt
the linear systems in (3.2) are more efficiently solved than the linear system (3.1) when implemen
on a parallel computer system.

3.2. PDIRK methods

Suppose that we choose B = D, where D is a diagonal matrix with nonnegative diagonal entries [:
The linear system in (3.2) is only 'diagonally implicit' and splits into s subsystems, each
dimension d, which can be solved in parallel. In particular, if a direct linear solver is used, then th
LU-decompositions can be computed in parallel, so that effectively only one decomposition
required. Similarly, in each iteration, the s components of the righthand side and the s forwa
backward substitutions can also be computed in parallel. In [24], methods of this type were cal
Parallel Diagonal-implicit Iterated RK (PDIRK) methods. Obviously, they are related to the parall
DIRK methods of Section 2.2.

Experiments reported in [24] showed that for stiff IVPs it is crucial pf&(«)) = p(l - D-1A) is
small (see also Theorem 3.4). In [24], the matrix B = D was determined by minimizing the value
p(I - D-1A) by a computer search. This indicated that it is highly likely that there exist matrices |
such thap(Z(«)) actually vanishes. This led us to pose the problem:

Problem 3.1. Given a Butcher matrix A, do there exist diagonal matrices D with positive diagone
entries such that BA has a one-point spectrum a#1.

If such a matrix D exist, then the diagonal entries of D are determined by the (nonlinear) system 1
is obtained by requiring that the equation deftfD- pl) = 0 has only zeros equal to 1. In this way,
Lioen [39] showed the following result:
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Theorem 3.5. For s-stage Radau IIA correctors with s = 2, ..., 8, there do exist diagonal matrices
with positive diagonal entries such thaf.® has a one-point spectrum a#1.

It turned out that the matrices D derived by Lioen all generate A-convergent PDIRK methoc
Unfortunately, however, the inner amplification fact@) are relatively large for small r,
particularly for larger values of s. In Table 3.1, these factors are listed for the four-stage and eic
stage Radau IIA correctors (first row). Note th&® equalsp. In addition, we listed the valué of r

for which the inner amplification factor becomes less than 1.

Table 3.1. Inner amplification factorsp(1),p(2),p(3),... p(*)] for Radau IIA correctors.

Method s=4 r s=8 r*
PDIRK [3.6, 2.5, 1.6, ... , 0.52] 5 [20, 12, 7.7, ..., 0.90] >40
PTIRK [0.6, 0.5, 0.5, ..., 0.50] 1 [1.0, 0.9, 0.9, ..., 0.86] 2
PBTIRK [2.2, 1.0, 0.8, ..., 0.44] 3 [14, 2.6, 1.6, ... ,0.64] 7

As a consequence, the number of iterations needed to achieve sufficient stability is expected t
high for PDIRK methods. The value of mr for whip{&ny) becomes and remains less than or equal
to y will be denoted by (my) For a few values of, Table 3.2 lists (myg)for the LSV and EPL
predictor and for a number of Radau IIA correctors (in order to demonstrate how fast fhealnes
increase with s, we have included all correctors wih83. These values show that for s = 4 the
(mr)y-values are acceptable, but for s = 8, PDIRK becomes stable only after a dramatically lai
number of iterations.

Table 3.2. Values of (mn.

PDIRK LSV 1.1 1 4 6 10 17 28 58
101 1 4 6 10 18 29 58
1 1 5 8 10 18 29 59
EPL 1 1 5 7 14 27 >40 >61
PTIRK LSV 1.1 1 1 1 1 1 1 1
101 1 1 1 7 8 9 11
1 1 5 8 11 14 17 20
EPL 1 1 3 4 10 14 26 >43

PBTIRK LSV
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3.3. PTIRK methods

One of the research issues of the ODE group at CWI is the improvement of the rate of convergenc
PDIRK methods, particularly with respect to the initial phase of the iteration process. One option is
choose the matrix B = T where T is lower triangular with positive diagonal entries. Such metho
will be called PTIRK methods [30]. The LU-decomposition of I3hl, again splits into s parallel
LU-decompositions of dimension d. If T is nondefective, then we may perform a Butche
transformationy ,(-v) = (QDI)VHU=V), with nonsingular Q, such that®¥JQ is diagonal. In this way,

we can obtain 'diagonal’ implicitness as in the PDIRK methods. As for the PDIRK methods, it
again crucial thap(Z(«)) = p(I - T-1A) is as small as possible. The following result was proved in
[20, 30]:

Theorem 3.6. Let A be defined by any collocation method with positive abscissas and let A=TU b
the Crout decomposition of A with T lower triangular and U unit upper triangular. pfienT-1A)
vanishes and T has positive diagonal entfies.

For a large number of RK methods, we computed the convergence regions of the generated PT
method which were all found A-convergent. For the four-stage and eight-stage Radau IlA correctc
the range of inner amplification factors is given in Table 3.1. These figures clearly show the supel
convergence behaviour of the PTIRK methods for small r. Moreover, the stability of the PTIR
methods for finite mr-values is also much better as can be concluded from thealuey listed in
Table 3.2.

3.4. PBTIRK methods

Our most recent attempt to improve the convergence chooses for B a matrix with the only requiren
that its eigenvalues are positive. By performing a Butcher transformation, it is possible to transfo
the iteration formula in (3.2) into

(3.13) (1- TOhG)(Y V) - Y0v-D) = - (1 - ADh)(Ynlv-D) - Y0-L0)
- (QIONR((QONY (L),
where A= QlAQ and where = Q1BQ is triangular or even diagonal if B is nondefective. The

resulting iteration schemes will be published in [31] and are called PBTIRK methods (Parallel Blo
Triangular-implicit Iterated RK methods). A first result is:

Theorem 3.7. Let A have its eigenvaluég + ing in the positive halfplane and let

D?ll O O O ... |:| 0

- ~ ~ - - 0 ak
814) T:=[JA2r T2 O O ...[7] ifnk=0then Tk :=&else Tk ::E

|:|A31 A3zo ?33 o ... |:|

d
Dl
20k O(kE
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(3.2) is A-convergent; (b) in the left halfplane Rez], the asymptotic amplification factor is
bounded by the maximal value of £xoi1 and vanishes at infinit§.

It turns out that the value of the asymptotic amplification fagtfmr the PBTIRK methods defined

by (3.14) is smaller than for the PDIRK and PTIRK methods (see Table 3.1 and reqaif fi{ed).

In [31] we analysed the case where the bloghqs in T vanish. Using a numerical search,
transformation matrices Q with minimal condition number (with respect to the maximum norm) we
determined. The averaged inner amplification factors and the-yaiges corresponding with these
matrices Q are listed in Table 3.1 and Table 3.2, respectively. Table 3.1 shows that the initial ¢
asymptotic amplification factors are respectively larger and smaller than those of PTIRK, while Tal
3.2 implies that for s = 8 PBTIRK is much more stable than PTIRK. This leads us to the question:

Problem 3.2. Given the matrix Tdefined in (3.14), do there exist bIocIZsj Auch that the
amplification factorp(") are smaller than for PTIRK and PBTIRK without sacrifycing stabfity.

4, Step-paralld iteration

In methods employingtep-parallel iteration, the iteration procedure is concurrently applied at a
number of step points, that is, the iteration process at the pasnalready started without waiting
until the iteratesr () at {,.1 have converged. Step-parallel methods and its various versions (als
calledfrontal methods) have been discussed and analysed in a number of papers, among wi
Miranker and Liniger [40], Bellen [3], Bellen et al. [4, 6], Burrage [12], Gear and Xu Xuhai [18],
Chartier [15], and Augustyn and Uberhuber [2]. Further references can be found in Burrage [12].
In the following, we survey step-parallel methods developed at CWI. These methods can be see
step-parallel versions of the scheme (3.2). The 'step-parallelization' of (3.2) consists of
modification of the predictor formula and of the residual fundioin order to specify this modified
scheme, we writ®(Y n,yn-1) instead oR(Y ). Then the step-parallel version of (3.2) is defined by

(4.1) Forn=1toN
Y n(01) = pOyn1 &0 + (PON Y . (L0)

For j=1tom
Yn(jio) = Yn(j'lvr)
Forv=1tor

(1 - BOh)(Y V) - YpGv-0) = - (1 - AOhJ)(Y V-1 - Y (-10)
- R(Yn(-1.0),yn100),

gther  yp0V) =y 160 + hTONF(YRGV)

o YY) = yn1G0 + GTA-101) (Y r0V) - elyn.1G),
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where N denotes the number of integration steps. In the case of one inner iteration (r = 1),
scheme has been analysed in [28, 29, 49]. The coupling between the Ygldtemndy,(:") in (4.1)
allows us to start the iteration process at the pgialréady after just one outer iterationai,tthat

is, as soon a¥n-1(1.N is computed, we can compuitg.1(2" andY (L") concurrently. In this way,

the outer iterate¥ 10:1), Y(-1.1), Y30-21), ... can all be computed concurrently. In fact, we may
write:

(4.2) Forj=1tom
For i = 1to min{j,N}
If i = then Y{©.n) = pOy;.1 (.0 + (PON Y.L
Y;(-i+1,0) = y;(-i.r)
For v =1tor
(1 - BOh3) (YiG+1v) - Y{(-i+1-D)
=- (1 - AORY) (YiG-+LV-D) - ;G0 ) - R(Y;00 y; 4 G-+10),

where we assumed TN and where we omitted the step point formula. Hence, effectively, only
N+m-1 outer iterates have to be computed, instead of Nm outer iterates as required by (3.2). -
sequential (or effective) number of outer iterations per step becogags M+N-1)NT=mN1+ 1.
However, the step-parallel approach requires that the predictor formula needed to start the iteratic
tn is based on a sufficiently "safe" iteratg.1(17). This requirement implies that we should perform
sufficiently many inner iterations in the first outer iteration. The conditianMnimposed on (4.2)
implies that we need N processors for a parallel implementation. In practice, the number of steps
be much larger than the number of processors available. This can be accounted for by dividing
integration interval in subintervals (windows) and by applying the integration process successive
on these subintervals.

For r = 1, a convergence analysis of (4.2) and related versions can be found in [28, 29, 49]. H¢
we shall consider the caserl. For simplicity, we only consider step point formulas of the form
ynU:n = (esTON Y 0N, An elementary derivation reveals that for the usual test equation the iteratio
erroren(V) := Y (V) - Y, satisfies the relation

(4.3)  gq0V) = Mg (v-D) + (1 - BOhd)L (eesTO1)gn-10:1,
where M is defined in (3.4). This leads to
(4.4)  gq0N) - Lignq0n) = MregpG-10, Ly == (1 - MN(1 - AOhdy)L(eesO1),

or equivalently,
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3007 [] Mrr OIr O O ..

. _ . 0.0 [] DLrM M O O - ]

(4.5) e(j+1l) = MN, r e, €0 := EZ ' U MNr = =L2ME LMT M O L. =

E E L amr L Lmre me . U

NG LI , , , []

Evidently, we have convergence whenever the spectr{iM) of M is within the unit circle. In

Section 3 we already saw that this is precisely the convergence condition for the inner iterati

process. However, sinceNd is defective for N > 1, the inner amplification factors may be large for

small r. Proceeding as in Section 3, we definarther amplification factors (cf. (3.8))

L
") = (" (z) =
(4.6)  pn® = max pNO(@), PNOE) VIENAD],

where
Z O O O ..
EKer Z 0 O E
ZN2) = =K2Zf KZ' Z' O ... Kr:= (1 - Z)(1 - zA)TeesT.
K3zl K2zt Kz zr ... d
L] . L L

The analogue of Table 3.1 where the inner amplification factors for N = 1 are listed, is given by Ta
4.1 where N = 2, 3, 4 (note thai(n) = p(N). This table shows the same trends as Table 3.1, bu
much more pronounced.

Table 4.1. Inner amplification factorspp(L),pn(@),pn(),... pn(™)] for Radau lIA correctors.

Method N s=4 r s=8 re
PDIRK 2  [3.7,29, 18, ..,052] 6 [21, 22, 18, ... ,0.90] >40
3 [4.1,34, 20, ..,052] 6 [23, 47, 48, ... .0.90] >40
4  [4.7,4.0, 623, ..,052] 6 [25,107, 128, ... . 0.90] >40
PTIRK 2  [0.8, 0.7, 0.6, ... , 0.50] 1 [1.2,1.0, 1.0, ... ,0.86] 3
3 [0.9 08, 07 ...050 1 [1.3,1.1, 1.0, ... .0.86] 4
4  [10, 08, 0.7, ..,050 2 [1.5,1.2, 1.1, ... .0.86] 5
PBTIRK 2  [3.6,1.3, 0.9, ..., 0.44] 3 [ 136,4.4, 2.2, ... ,0.64] 9
3 5.1, 1.4, 1.0, ..., 0.44] 3 [ 1352,6.7, 2.8, ... ,0.64] 9
4  [6.6 1.5, 1.0, ..,044] 4 [13432,9.7, 3.5, ... ,0.64] 10

5. Waveform relaxation
The derivation of waveform relaxation (WR) methods starts with representing the IVP (1.1) in tF
form

d
(51) § =evy). y(to) =yo, ¥, 9ORY,
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where@(u,v) is asplitting function satisfying@(y,y) =f(y). This splitting function is chosen such that
the Jacobian matriX F d@/du has a simple structure, so that, given an approximgftioh to the
solutiony of (5.1), a next approximatiofik) is more easily solved from the system

(5.2) MY =gy, ylkD), y00, yD), oI RY

thany is solved from (5.1). Here, k=1, 2, ..., q, %@ denotes an initial approximation to the
solution of (5.1). The iteration process (5.2) is catieatinuous WR iteration with WR iterates/(K).

This approach was introduced by Lelarasmee [36] and Lelarasmee, Ruehli and Sangiovat
Vincentelli [37] in 1982 and since then has intensively been analysed and applied to IVPs (see
[35]). WR iteration has a lot of potential parallelism. For example, a popular choice for the splittir
function@is such that the matrixX J o-by-o block-diagonal (block-Jacobi WR method). Then, each
iteration of the WR method (5.2) requires the integratiom ohcoupled IVP systems which can be
done in parallel oo processors. For a detailed survey of the potential for parallelism of Wk
methods, we refer to the recent book of Burrage [12]. Here, we present a brief description of a \
approach based on RK methods and its relation with the step-parallel methods of the precec
section.

Let us integrate the IVP for (5.2) numerically by the RK method (1.2). Then, we obtain the scheme

(5.3) For k=1toq:For n=1to N: Y& = edyn.1K + h(AO) DY 1K), Y n(k-1)),

Here,yn(K), YK, and® are the analogues wf.1, Y andF occurring in (1.2). As soon &) is
computed, the step point valygk) can be obtained by one of the following two formulas (cf. (2.3))

(5.4)  yn® =yp1® + hETODFYRK), ya® =yn10 + OTA-100) (Y 1K) - eOyn-1().

The scheme {(5.3),(5.4)} is called thliscrete WR iteration process with (discrete) WR iterategn(K)
andyn(®. Its stability and convergence properties has recently been investigated by Belle
Jackiewicz and Zennaro [4, 5] and by in't Hout [21].

Observe that (5.3) has a substantial amount of parallelism, irrespective the structure of the splitt
function®. It has a similar type of step parallelism as (4.2), because for given k, all iterées
Yo(k-1) Ya(k-2) . can be computed in parallel (see also [5]). Hence, effectively, (5.3) does nc
require the computation of gN iterates, but only of N+qg-1 iterates.

Finally, we remark that the nonlinear system YofK) in (5.3) is of the same type as the system
(1.2), so that it can be solved by modified Newton using the iterative linear system solver .
described in Section 3. First results are published in [26]. Extensions to general implicit differenti
equations (including DAES) are subject of current research [32].
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